Jobs
Meine Anzeigen
Jobs per E-Mail
Anmelden
Stellenangebote Job Tipps Unternehmen
Suchen

Master thesis deep learning for ultrasound

Grundhof
Abschlussarbeit
Bosch
Master
Inserat online seit: 7 November
Beschreibung

Master Thesis Deep Learning for Ultrasound Robert-Bosch-Campus 1, 71272 Renningen, Germany Full-time Robert Bosch GmbH Company Description At Bosch, we shape the future by inventing high-quality technologies and services that spark enthusiasm and enrich people’s lives. Our promise to our associates is rock-solid: we grow together, we enjoy our work, and we inspire each other. Join in and feel the difference. The Robert Bosch GmbH is looking forward to your application! Job Description Automated parking in challenging scenarios requires a precise free space estimation. Ultrasound sensors are suitable for high-precision predictions in close range. The topic of the thesis is the development of deep learning models for ultrasound, which exhibit good performance and are computational efficient. During your thesis you will have the possibility to develop and implement innovative ideas, new deep learning models for ultrasound data, especially as there is not a lot of research on deep learning for ultrasound sensors available yet. In addition, the ultrasound data can be fused with video data and processed together to enhance the performance. Furthermore, you will evaluate and compare the new models to existing baseline models. Working with real world data forms the foundation of your research to ensure the practicality and robustness of your solutions. Qualifications Education: Master studies in the field of Natural Sciences or Engineering like Machine Learning, Computer Science, Math, Statistics, Physics, Cybernetics, Electrical/Mechanical Engineering with very good grades Experience and Knowledge: strong knowledge of and practical experience in Deep Learning, Computer Vision, Machine Learning, and 3D perception systems; Python as well as very good knowledge of a deep learning framework (preferably PyTorch) Personality and Working Practice: you excel at working independently and are strongly intrinsic motivated Languages: fluent in English Additional Information Start: according to prior agreement Duration: 6 months Requirement for this thesis is the enrollment at university. Please attach your CV, transcript of records, examination regulations and if indicated a valid work and residence permit. Diversity and inclusion are not just trends for us but are firmly anchored in our corporate culture. Therefore, we welcome all applications, regardless of gender, age, disability, religion, ethnic origin or sexual identity. Need further information about the job? Kilian Rambach (Functional Department) 49 173 490 2787 LI-DNI

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern
Ähnliches Angebot
Abschlussarbeit (master) endfertigung laser (m/w/d)
Hornberg
Abschlussarbeit
Duravit
Master
Ähnliches Angebot
Master thesis automated driving systems
Grundhof
Abschlussarbeit
Bosch
Master
Ähnliches Angebot
Master thesis optimizing multi-flow congestion control for cots 5g devices via machine learning
Grundhof
Abschlussarbeit
Bosch
Master
Mehr Stellenangebote
Ähnliche Angebote
Stellenangebote Bosch
Bosch Jobs im Kreis Böblingen (Kreis)
Erziehung Jobs im Kreis Böblingen (Kreis)
Jobs Böblingen (Kreis)
Jobs Grundhof
Jobs Baden-Württemberg
Home > Stellenangebote > Erziehung Jobs > Master Jobs > Master Jobs im Kreis Böblingen (Kreis) > Master Thesis Deep Learning for Ultrasound

Jobijoba

  • Job-Ratgeber
  • Bewertungen Unternehmen

Stellenangebote finden

  • Stellenangebote nach Jobtitel
  • Stellenangebote nach Berufsfeld
  • Stellenangebote nach Firma
  • Stellenangebote nach Ort
  • Stellenangebote nach Stichworten

Kontakt / Partner

  • Kontakt
  • Veröffentlichen Sie Ihre Angebote auf Jobijoba

Impressum - Allgemeine Geschäftsbedingungen - Datenschutzerklärung - Meine Cookies verwalten - Barrierefreiheit: Nicht konform

© 2025 Jobijoba - Alle Rechte vorbehalten

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern