Jobs
Meine Anzeigen
Jobs per E-Mail
Anmelden
Stellenangebote Job Tipps Unternehmen
Suchen

Phd – generative models for closed-loop synthesis

Renningen
Bosch
Model
Inserat online seit: 10 Juli
Beschreibung

Job Description


We are conducting cutting-edge research on advanced generative models aimed at enhancing data efficiency in Bosch systems. We are seeking a PhD student who is passionate about exploring innovative applications of generative models (such as diffusion and autoregressive models) to simulate real-world scenarios for AI training and validation.

The development of AI models is often an iterative process that requires increasingly large datasets to address long-tail cases that are not represented in existing data. However, collecting data from the real world can be time-consuming and expensive, hindering the automation of the data loop. The objective of this thesis is to create new methodologies that enable generative models to substitute for the real-world, facilitating closed-loop interactions. This may involve designing novel control mechanisms to efficiently sample the required data and respond to interactions.

As a member of our team, you will:

* Develop novel deep generative models (e.g., diffusion models) as data sources to enhance the training and validation of downstream models.
* Collaborate with experts in deep learning and computer vision at the Bosch Center for AI to brainstorm and develop new ideas.
* Aim for publications in top-tier journals and conferences.

Qualifications

* Education: excellent degree in Computer Science, or related field with focus on Computer Vision and Deep Learning
* Experience and Knowledge: strong background in deep learning and computer vision, experience with deep learning frameworks (TensorFlow, PyTorch, etc.), strong programming skills, in particular Python, knowledge and experience in deep generative modeling as well as foundation models are a plus, experience with publication of peer-reviewed research papers is beneficial
* Enthusiasm: motivation to work in an interdisciplinary and international team
* Languages: very good English skills and academic writing skills


Additional Information


https://www.bosch-ai.com
www.bosch.com/research

Please submit all relevant documents (incl. curriculum vitae, certificates).

Diversity and inclusion are not just trends for us but are firmly anchored in our corporate culture. Therefore, we welcome all applications, regardless of gender, age, disability, religion, ethnic origin or sexual identity.

Need support during your application?

Sarah Schneck (Human Resources)
+49 711 811-43338

Need further information about the job?
Jiayi Wang (Functional Department)
+49 711 811 44429
Julia Vinogradska (Functional Department)
+49 711 811 27767

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern
Ähnliches Angebot
Praktikant*in supply chain planung amg-models
Sindelfingen
Praktikum
Mercedes-Benz AG
Model
Ähnliches Angebot
Phd – generative models for closed-loop synthesis
Renningen
Bosch Gruppe
Model
Ähnliches Angebot
Phd candidate for physics-informed machine learning in the context of vehicle models (f/m/d) - inklusiver job 🦼 🦻 🦯
Mönsheim
CARIAD
Model
Mehr Stellenangebote
Ähnliche Angebote
Stellenangebote Bosch
Bosch Jobs in Renningen
Kunst und Kultur Jobs in Renningen
Jobs Renningen
Jobs Böblingen (Kreis)
Jobs Baden-Württemberg
Home > Stellenangebote > Kunst und Kultur Jobs > Model Jobs > Model Jobs in Renningen > PhD – Generative Models for Closed-loop Synthesis

Jobijoba

  • Job-Ratgeber
  • Bewertungen Unternehmen

Stellenangebote finden

  • Stellenangebote nach Jobtitel
  • Stellenangebote nach Berufsfeld
  • Stellenangebote nach Firma
  • Stellenangebote nach Ort
  • Stellenangebote nach Stichworten

Kontakt / Partner

  • Kontakt
  • Veröffentlichen Sie Ihre Angebote auf Jobijoba

Impressum - Allgemeine Geschäftsbedingungen - Datenschutzerklärung - Meine Cookies verwalten - Barrierefreiheit: Nicht konform

© 2025 Jobijoba - Alle Rechte vorbehalten

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern