Your Job:
Chromatography modeling, while crucial for modern bipporcess development, still heavily relies on empirical determination of key model parameters. By combining protein structure descriptors, molecular simulations, and machine learning, this PhD project seeks to predict ion-exchange isotherm parameters directly from molecular properties. These predictions will be integrated into the open-source CADET simulation framework, enabling fully predictive process simulations without extensive experimental calibration. Embedded in the Helmholtz Graduate School for Data Science in Life, Earth and Energy (HDS-LEE), the project offers an interdisciplinary research environment at the interface of bioengineering, computational biophysics, and data-driven modeling, with strong links