The Safety Engineering department develops methods and tools for model-based safety engineering, dynamic risk management and innovative safety concepts. Fraunhofer IESE’s Predictive Autonomy Lab (PAL) is a state-of-the-art driving simulator laboratory supporting research in automated driving systems, safety engineering, and human-machine interaction. It offers a controlled environment for researching human behavior in the context of the automotive domain focusing on driving automation systems and driver monitoring (. As vehicles increasingly integrate partial automated driving systems and driver control assistance systems (ADAS/DCAS) drivers need to supervise the automation system. In this context driver monitoring systems (DMS) become important to ensure a correct supervision. To validate new technologies for DMS a robust evaluation environments with a realistic reference system become critical. This master thesis aims to select and integrate an open-source DCAS and DMS solution (e.g., openpilot, Apollo Auto, CARLA-based extensions) into our PAL, enabling benchmarking against a realistic reference system.
Was Du bei uns tust
* Do your master thesis in close collaboration with ongoing research
* Work as part of your master thesis comprises:
- Conduct a survey of open-source partial driving automation and driver monitoring systems
- Select a suitable system based on requirements that you defined in alignment with the supervisor
- Design an integration architecture for the chosen system and the PAL
- Implement the technical integration
- Validate the successful integration
* Present your progress regularly to your supervisor
* Finalize your thesis documenting your work
* Present your final results to your professor, your supervisor and colleagues at Fraunhofer IESE
Was Du mitbringst
* Computer science student (or comparable university course)
* Fluency in German or English (spoken and written)
* Ability to work on-site at Fraunhofer IESE in Kaiserslautern
* Strong programming skills in Python and C++
* Experience working with driving simulation environments (e.g., CARLA, SILAB) and implementing + integrating components into the them
* Very good academic transcript w.r.t. master courses with no courses remaining besides this thesis when the master thesis is expected to start
* Good communication skills to explain concepts and receive feedback
* High motivation, independence, and reliability
Was Du erwarten kannst
* Weekly or bi-weekly meetings with the supervisor to receive continuous and early feedback
* Access to and chance to work with a state-of-the-art driving simulator environment
* Opportunity to work on a scientifically valuable topic supporting ongoing research projects
* Collaborative and supportive research environment
* Flexible working hours
* Possibility to work on-site as well as from home in alignment with the needs of the ongoing work
* Contribution to the advancement of safety-based technologies in automated driving
Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt.
Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.
Haben wir Dein Interesse geweckt? Dann bewirb Dich jetzt online mit Deinen aussagekräftigen Bewerbungsunterlagen. Wir freuen uns darauf, Dich kennenzulernen!
Für inhaltliche Fragen wende dich bitte an:
Marc Lorenz
marc.lorenz@iese.fraunhofer.de
Fraunhofer-Institut für Experimentelles Software Engineering IESE
Kennziffer: 81411Bewerbungsfrist: