Jobs
Meine Anzeigen
Jobs per E-Mail
Anmelden
Stellenangebote Job Tipps Unternehmen
Suchen

M.sc. thesis (tum × bentley): semantic classification of design components in 2d drawings & 3d geometry (m.sc. thesis (tum × bentley): semantic classification of design components in 2d drawings & 3d geometry (un/self-supervised)

München
Technical University of Munich
Designer
Inserat online seit: 12 September
Beschreibung

Two thesis topics · Winter Semester · Application deadline: 10 Oct

M.Sc. Thesis (TUM × Bentley): Semantic Classification of Design Components in 2D Drawings & 3D Geometry (Un/Self-Supervised)

12.09., Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

Two M.Sc. thesis topics in cooperation with Bentley starting Winter Semester. Focus: unsupervised/self-supervised methods for semantic classification of design components in 2D drawings and 3D geometry. Application deadline: October 10, .

Two Master Thesis Topics (TUM × Bentley Systems)

Start: Winter Semester
Application deadline: October 10,
Cooperation: Technical University of Munich (TUM) × Bentley

Advisors:
TUM: Panagiotis Petropoulakis —
Bentley: Georgios Pavlidis —

Possible examiners:
Prof. Dr.-Ing. habil. Alois Christian Knoll (Chair of Robotics, Artificial Intelligence and Real-Time Systems)
Prof. Dr.-Ing. André Borrmann (Computational Modeling and Simulation / Computing in Civil and Building Engineering)

Option A — 2D Drawings

Semantic Classification of Design Components in 2D Drawings Using Unsupervised Learning

Background. 2D CAD drawings and floorplans encode geometry and symbols (walls, doors, windows). Manual or rule-based parsing is brittle. Recent advances in self-supervised representation learning enable robust parsing without extensive labels.

Objectives.

1. Parse 2D CAD floorplans or raster drawings to extract candidate elements (lines, arcs, symbols).
2. Compute geometry- and context-aware embeddings (topology, adjacency, openings, annotations).
3. Use unsupervised/self-supervised methods (e.g., contrastive learning, clustering) to group elements into semantic classes (walls, doors, windows, columns).
4. Evaluate integration into design workflows and links to 3D BIM models for cross-modal consistency.

Expected outcomes. Prototype that identifies and labels basic components from drawings; analysis of methods; evaluation across datasets and design styles.

Option B — 3D Geometry

Semantic Classification of Design Components Using Unsupervised Learning on 3D Geometric Data

Background. BIM/CAD models store rich geometry, but semantics are often manually annotated or inferred via rigid rules. Geometric deep learning and computer vision can infer semantics directly from shape, topology, and context.

Objectives.

5. Analyze 3D geometry from BIM/CAD to identify doors, windows, walls, columns, etc.
6. Leverage unsupervised learning to discover patterns and groupings that infer semantic classes.
7. Exploit spatial/topological features (bounding boxes, adjacency, openings) to improve accuracy.
8. Assess integration into existing design workflows (e.g., component reuse, automated documentation).

Expected outcomes. Working prototype for geometry-based identification/labeling; comparative evaluation across datasets and contexts.

Downloads

9. Thesis PDF — Option A (2D Drawings)
10. Thesis PDF — Option B (3D Geometry)

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern
Ähnliches Angebot
Duales studium tourismusmanagement (b.a.) - design offices
München
IU Internationale Hochschule
Designer
Ähnliches Angebot
(senior) solution design specialist (m/w/d)
München
Cancom
Designer
Ähnliches Angebot
Duales studium tourismusmanagement (b.a.) - design offices
München
IU Internationale Hochschule
Designer
Mehr Stellenangebote
Ähnliche Angebote
Design Jobs in München
Jobs München
Jobs München (Kreis)
Jobs Bayern
Home > Stellenangebote > Design Jobs > Designer Jobs > Designer Jobs in München > M.Sc. Thesis (TUM × Bentley): Semantic Classification of Design Components in 2D Drawings & 3D Geometry (M.Sc. Thesis (TUM × Bentley): Semantic Classification of Design Components in 2D Drawings & 3D Geometry (Un/Self-Supervised)

Jobijoba

  • Job-Ratgeber
  • Bewertungen Unternehmen

Stellenangebote finden

  • Stellenangebote nach Jobtitel
  • Stellenangebote nach Berufsfeld
  • Stellenangebote nach Firma
  • Stellenangebote nach Ort
  • Stellenangebote nach Stichworten

Kontakt / Partner

  • Kontakt
  • Veröffentlichen Sie Ihre Angebote auf Jobijoba

Impressum - Allgemeine Geschäftsbedingungen - Datenschutzerklärung - Meine Cookies verwalten - Barrierefreiheit: Nicht konform

© 2025 Jobijoba - Alle Rechte vorbehalten

Bewerben
E-Mail Alert anlegen
Alert aktiviert
Speichern
Speichern